RAS Social ScienceСоциологические исследования Sotsialogicheski issledovania

  • ISSN (Print) 0132-1625
  • ISSN (Online) 3034-6010

OPEN AI AS ASSISTANTS IN INTERVIEW ANALYSIS

PII
S0132162525040095-1
DOI
10.31857/S0132162525040095
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
105-116
Abstract
The article discusses possibilities of using software (using QDA Miner Light as an example) and artificial intelligence (AI) to analyze in-depth interviews in sociological research. The authors consider a long-known, but not very widespread in the Russian--speaking segment, QDA Miner, as well as the new and increasingly popular Open AI, as tools that can complement traditional approaches to analyzing qualitative data. Various interview arrays are used to test the tools. The article shows how the use of these technologies improves efficiency of information processing, minimizes errors associated with manual coding, tests research hypotheses and obtains new conclusions. All this together allows not only to significantly speed up the analysis process, but also to improve quality of the conclusions obtained. The authors argue for a balanced approach combining traditional methods with innovative technologies to achieve a deeper understanding of research topics and enhance reliability of findings. By showcasing capabilities of both established software and emerging AI tools, this study contributes to advancing methodological practices in sociology and encourages researchers to adopt a more versatile toolkit for qualitative analysis.
Keywords
анализ интервью тематическое кодирование Open AI лексический анализ семантический анализ QDA Miner Light
Date of publication
21.08.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Видясова Л. А. Активное и отложенное старение в оценках пожилых (по данным пилотного исследования в Санкт--Петербурге) // Журнал исследований социальной политики. 2023. № 3(21). С. 485- 502. DOI: 10.17323/727-0634-2023-21-3-485-502.
  2. 2. Данилова А. Г., Митина О. В. Компьютеризированный качественный анализ текста // Вестник Московского университета. Серия 14. Психология. 2021. № 1. 220-240. DOI: 10.11621/vsp.2021.01.09.
  3. 3. Котов Д. Алгоритмы искусственного интеллекта в прикладных социологических исследованиях // Социодиггер. 2023. Т. 4. Вып. 7-8(27). URL: https://sociodigger.ru/articles/articles-page/algoritmy--iskusstvennogo-intellekta-v-prikladnykh--sociologicheskikh-issledovanijakh (дата обращения: 24.09.2024).
  4. 4. Мальцева Е. Ю., Молчанова Е. В. Применение информационных технологий при проведении социологического исследования // Концепт. 2015. № .2. С. 61-65.
  5. 5. Практики анализа качественных данных в социальных науках / Отв. ред. Е. В. Полухина. М.: ИД «Высшая школа экономики», 2023.
  6. 6. Страусс А., Корбин Дж. Основы качественного исследования: обоснованная теория, процедуры и техники / пер. с англ. Васильевой Т. С. М.: Эдиториал УРСС, 2001.
  7. 7. Bail C. A. Can Generative AI improve social science? // Proceedings of the National Academy of Sciences. 2024. No. 21(121). С. e2314021121. DOI: 10.1073/pnas.2314021121.
  8. 8. Bhaduri S. et al. Reconciling Methodological Paradigms: Employing Large Language Models as Novice Qualitative Research Assistants in Talent Management Research. 2024. URL: https://arxiv.org/pdf/2408.11043 (дата обращения: 24.09.2024).
  9. 9. Bumbuc S. About subjectivity in qualitative data interpretation // International Conference Knowledge--Based Organization. 2016. No. 2(22). P. 419-424. DOI: 10.1515/kbo-2016-0072.
  10. 10. Davidson T. Start generating: Harnessing generative artificial intelligence for sociological research // Socius. 2024. Vol. P. 1-17. DOI: 10.1177/2378023124125965.
  11. 11. Grossmann I. et al. AI and the Transformation of Social Science Research // Science. 2023. No. 380(6650). P. 1108-1109. DOI: 10.1126/science.adi1778.
  12. 12. Kelle U. Computer--Aided Qualitative Data Analysis: an Overview // Text Analysis and Computers / Еd. by C. Zü ll, J. Harkness, J.H.P. Hoffmeyer--Zlotnik (eds). Mannheim: Zentrum für Umfragen, Methoden und Analysen, 1996. P. 33-63.
  13. 13. Krippendorff K. Content analysis: An introduction to its methodology // Sage publications. 2018. Цит. по: Parfenova A. et al. Automating Qualitative Data Analysis with Large Language Models // Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024. Vol. 4. P. 177-185. DOI: 10.18653/v1/2024.acl-srw.17.
  14. 14. Parfenova A. et al. Automating Qualitative Data Analysis with Large Language Models // Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics. 2024. Vol. 4. P. 177-185. DOI: 10.18653/v1/2024.acl-srw.17.
  15. 15. Wiltshier F. Researching with NVivo 8 // Forum: Qualitative Social Research. 2011. Vol. 12. No. 1. URL: http://www.qualitative--research.net/index.php/fqs/article/view/1628/3146 (дата обращения: 24.09.2024).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library